As defined by the National Research Council, a gravity-related phenomenon is either directly affected by reduced gravity or becomes significant as the gravity level is reduced. In general, the focus of microgravity research and applications is the study and assessment of these biological, physical, and chemical phenomenology and related issues.1

Conducting experiments in a microgravity environment has the potential for discoveries that can both improve life on Earth and advance our understanding of space. From integrated circuits, to silicon solar cells and memory foam, the benefits of previous ventures into space have transformed the way we live and operate as humans. The promises of this new generation of space exploration are equally vast, offering us the potential for an array of possibilities from the design of more efficient therapies and better vaccines, to creating stronger and more conductive materials, to developing new plant varieties that are better adapted to extreme conditions. The opportunity for advances offers an infinite horizon of possibilities that does not just lead to new products, but to entirely new categories that can fundamentally change the way we live.

source: https://www.nature.com/articles/npjmgrav20151

Leave a Reply

Your email address will not be published. Required fields are marked *

Post comment